25 июня 2007 01:29 |
Патогенез артериальной гипертензии при сахарном диабете и побочные действия применяемых гипотензивных средств
В связи со старением населения экономически развитых стран наблюдается существенный рост как случаев артериальной гипертензии (АГ), так и инсулиннезависимого сахарного диабета (ИНСД). По данным ряда исследователей 35−75% осложнений диабета со стороны сердечно-сосудистой системы или почек могут быть связаны с АГ [1, 17, 24, 25, 49]. АГ наблюдается у лиц, страдающих сахарным диабетом, в 2 раза чаще по сравнению с другими группами людей [4, 19, 49]. Важное значение в развитии обоих заболеваний имеют образ жизни и наследственность. АГ способствует также развитию диабетической ретинопатии, основной причиной слепоты в США [19]. Исходя из этих соображений, АГ и сахарный диабет как можно раньше должны быть диагностированы и активно лечены.
У большинства больных ИНСД, составляющих около 90% лиц с сахарным диабетом и АГ, отмечается эссенциальная гипертензия [19, 25]. Диабетическая нефропатия встречается у трети больных с инсулинзависимым сахарным диабетом (ИЗСД) и у 20% с ИНСД, являясь важным патогенетическим фактором в развитии АГ. АГ, сочетающаяся с диабетической нефропатией, характеризуется задержкой жидкости и натрия, повышением общего периферического сопротивления. Для больных сахарным диабетом характерно развитие систолической АГ, а присоединение автономной нейропатии обусловливает редкую встречаемость у них ортостической гипотензии [19, 25, 48].
Механизмы патогенеза сосудистых нарушений у больных сахарным диабетом с АГ могут быть представлены следующим образом:
1. Увеличение адгезии и агрегации тромбоцитов;
2. Аномалии свертывающей системы;
3. Патология липопротеидов;
4. Эндотелиальная дисфункция;
5. Инсулиноподобный факторроста-1 и сосудистая сократимость;
6. Влияние гипергликемии на сосудистые аномалии при сахарном диабете и АГ [24].
1. Увеличение адгезии и агрегации тромбоцитов;
2. Аномалии свертывающей системы;
3. Патология липопротеидов;
4. Эндотелиальная дисфункция;
5. Инсулиноподобный фактор
6. Влияние гипергликемии на сосудистые аномалии при сахарном диабете и АГ [24].
У пациентов с сахарным диабетом во многом сходны нарушения гемодинамики в сосудах почек и системного кровообращения [60]. Показана общность функциональных и морфологических изменений в микроциркуляции сетчатки и клубочков почек. Появление альбуминурии у больных сахарным диабетом свидетельствует не только о развитии нефропатии, но и о пролиферативной ретинопатии [57]. Аналогично изменениям в клубочковом аппарате, микроциркуляторные изменения в сетчатке наступают за несколько лет до развития ретинопатии. Гиперперфузия сетчатки с дилатацией ее артерий и вен найдена у больных с первыми признаками ИЗСД, на стадии, когда ретинопатия или не обнаруживается, или минимально выражена [21, 35]. Аналогичная гиперперфузия наблюдается в капиллярах кожи и подкожно-жировой клетчатке предплечья у больных сахарным диабетом. Теория гломерулярной гиперфильтрации поддерживается сообщениями о повышении тока плазмы в почках большинства больных ИЗСД без альбуминурии. Повышение фильтрации в почках возникает остро после развития ИЗСД и опосредуется следующими факторами: гипергликемией, гиперинсулинемией, повышением уровня ряда гормонов (гормон роста, глюкагон, натрийуретический пептид, инсулин-подобный фактор роста-1), кетоновых тел и ДР [28, 44].
Нарушения ауторегуляции периферического капиллярного кровотока соответствуют микроциркуляторному поражению клубочкового аппарата [27]. Транскапиллярный выход альбумина (ТВА) опосредованно отражает переход альбумина из плазмы крови в почки и другие ткани и рассматривается в качестве маркера повреждения сосудов мик-роциркуляторного русла [44]. Не выявлено изменений ТВА у больных, длительно болеющих ИЗСД и без признаков осложнений заболевания. В то же время, выявлено повышение ТВА у пациентов с развившейся нефропатией и у больных без АГ, но с микроальбуминурией. На уровень ТВА оказывают влияние разичные факторы. Так, существенные колебания гликемии в короткое время способствуют увеличению сосудистой проницаемости у больных СД. Наличие АГ при эссенциальной гипертонии вызывает повышение ТВА, причем между этими показателями отмечается прямая корреляционная зависимость [44]. Однако умеренная АГ при ИЗСД не рассматривается в качестве инициирующего момента в прохождении альбумина через мембрану капилляров. У этих больных повышение ТВА отмечено лишь при увеличенной протеинурии. В случаях существенной АГ (эссенциальной или при сахарном диабете) повышение ТВА в большей степени отражает гемодинамические нарушения в микроциркуляторном русле, чем повреждение фильтрационной способности почек. Таким образом, показано, что механизмы инициации и поддержания АГ у больных с ИЗСД и диабетической нефропатией отличны от таковых у пациентов без альбуминурии.
На основании этих данных теория генерализованной гиперперфузии рассматривается в качестве основы патогенеза осложнений сахарного диабета в виде микроангиопатии сетчатки, почечных клубочков и периферического сосудистого русла. Отдаленным последствием выраженной гипергликемии является увеличение объема внеклеточной жидкости, ведущее к снижению содержания ренина и увеличению содержания натрий-уретического пептида в плазме крови, которые в совокупности с измененным уровнем других вазоактивных гормонов приводят к генерализации наблюдаемой вазодилатации. Генерализованная вазодилатация вызывает утолщение базальной мембраны во всех капиллярах и подъем капиллярного давления в почках и сетчатке глаз [13].
Адгезия тромбоцитов и их агрегация существенно увеличены как у больных сахарным диабетом, так и при АГ [47, 50, 54]. Механизмы, ответственные за агрегацию тромбоцитов при обоих заболеваниях в достаточной мере взаимосвязаны. По-видимому, при этих заболеваниях определенную роль играет внутриклеточный метаболизм двухвалентных катионов. На ранних стадиях активации тромбоцитов большое значение придается внутриклеточным ионам кальция и магния [6, 42, 55]. Агрегация тромбоцитов связана с необходимым для инициации этого процесса ростом содержания внутриклеточного кальция [55]. Увеличение содержания внутриклеточного магния in vitro оказывает ингибирующее действие на агрегацию тромбоцитов [52]. В значительном числе исследований, выполненных при гипертонической болезни и сахарном диабете, выявлено увеличение содержания кальция и снижение концентрации магния в тромбоцитах [26, 35, 36,42 и др.]. Таким образом, нарушение баланса внутриклеточного содержания двухвалентных катионов может играть роль в увеличении агрегации тробмоцитов у больных сахарным диабетом и АГ.
Тромбоцитарные аномалии у больных сахарным диабетом и АГ можно представить следующим образом:
1. Увеличение адгезивности тромбоцитов;
2. Увеличение агрегации тромбоцитов;
3. Уменьшение времени жизни тромбоцитов;
4. Увеличение склонности к формированию тромбов in vitro;
5. Увеличение продукции тромбоцитами тромбоксана и других сосудосуживающих простаноидов;
6. Снижение выработки тромбоцитами простациклина и других сосудорасширяющих простаноидов;
7. Нарушение гомеостаза двухвалентных катионов в тромбоцитах;
8. Увеличение неферментного гликолиза тромбоцитарных белков, включая гликопротеины IIВ и IIIА [24].
1. Увеличение адгезивности тромбоцитов;
2. Увеличение агрегации тромбоцитов;
3. Уменьшение времени жизни тромбоцитов;
4. Увеличение склонности к формированию тромбов in vitro;
5. Увеличение продукции тромбоцитами тромбоксана и других сосудосуживающих простаноидов;
6. Снижение выработки тромбоцитами простациклина и других сосудорасширяющих простаноидов;
7. Нарушение гомеостаза двухвалентных катионов в тромбоцитах;
8. Увеличение неферментного гликолиза тромбоцитарных белков, включая гликопротеины IIВ и IIIА [24].
У больных сахарным диабетом соотношение между свертывающей и антисвертывающей системами поддерживается несколькими механизмами [18, 32, 47]. Гиперкоагуляция и повреждения системы фибринолиза в сочетании с гиперактивацией тромбоцитов у больных сахарным диабетом ведут к АГ, гликемическим и липидемическим нарушениям с проявлениями повреждений сосудов [18, 32, 45]. Так, у больных сахарным диабетом, особенно при повреждении эндотелиальных клеток, микро- и макрососудистых нарушениях и при неудовлетворительной гипогликемической терапии наблюдается рост активности ряда компонентов свертывающей системы, включая вырабатываемый эндотелием фактор Виллебранда [18, 32, 45] Показано, что высокая концентрация компонентов VIII фактора ведет к гипергликемии, увеличению скорости образования тромбина и к росту окклюзирующих поражений сосудов у больных сахарным диабетом [45].
Увеличение связывания фибриногена и агрегация тромбоцитов у больных сахарным диабетом в ответ на воздействие аденозиндифосфата или коллагена опосредуется через увеличение образования простагландина Н2, тромбоксана А2 или их обоих [22, 23]. Рядом авторов показано, что увеличение продукции тромбоксана может быть скорее связано с высокими концентрациями в крови глюкозы и липидов (или их обоих), чем с увеличением взамодействия тромбоцитов и стенки кровеносных сосудов [41]. Однако обоснованность этих исследований in vitro позже была подвергнута сомнению работами in vivo. При определении экскреции с мочой большинства ферментных метаболитов тромбоксана В не удалось выявить статистически значимых отличий у больных диабетом с ретинопатией или без нее и в контрольной группе [11].
Липопротеидные нарушения и патология свертывающей системы, вызывающие инсулинорезистентность и АГ при ИНЗД, могут быть представлены следующим образом:
1. Увеличение содержания в плазме крови липопротеидов очень низкой плотности (ЛОНП), липопротеидов низкой плотности (ЛНП) и липопротеина (а);
2. Уменьшение содержания липопротеида высокой плотности (ЛВП);
3. Увеличение содержания триглицеридов в плазме крови;
4. Увеличение окисления липопротеидов;
5. Увеличение гликолиза липопротеидов;
6. Увеличение содержания продуктов ЛНП;
7. Снижение активности липазы липопротеидов;
8. Рост фибриногена и ингибитора плазминогенногоактиватора-1;
9. Уменьшение содержания плазминогенного активатора и фибринолитической активности;
10 Уменьшение содержания ангиотензина III, уровней протеина С и S. [2, 39, 61].
1. Увеличение содержания в плазме крови липопротеидов очень низкой плотности (ЛОНП), липопротеидов низкой плотности (ЛНП) и липопротеина (а);
2. Уменьшение содержания липопротеида высокой плотности (ЛВП);
3. Увеличение содержания триглицеридов в плазме крови;
4. Увеличение окисления липопротеидов;
5. Увеличение гликолиза липопротеидов;
6. Увеличение содержания продуктов ЛНП;
7. Снижение активности липазы липопротеидов;
8. Рост фибриногена и ингибитора плазминогенного
9. Уменьшение содержания плазминогенного активатора и фибринолитической активности;
10 Уменьшение содержания ангиотензина III, уровней протеина С и S. [2, 39, 61].
При сахарном диабете и АГ развивается целый ряд анатомических и функциональных нарушений со стороны сосудистого эндотелия:
1. Увеличение содержания фактора Виллебранда в плазме крови;
2. Увеличение экспрессии, синтеза и содержания в плазме кровиэндотелина-1;
3. Ограничение выработки простациклина;
4. Уменьшение выработкиэндотелий-зависимого фактора расслабления (NO) и снижение чувствительности к нему;
5. Повреждение фибринолитической активности;
6. Нарушение деградации плазмина гликолизированным фибрином;
7. Увеличение эндотелиальной клеткой поверхности тромбомоделина;
8. Увеличение эндотелиальной клеткой прокоагулянтной активности;
9. Увеличение уровня конечных продуктов гликосилации [24].
1. Увеличение содержания фактора Виллебранда в плазме крови;
2. Увеличение экспрессии, синтеза и содержания в плазме крови
3. Ограничение выработки простациклина;
4. Уменьшение выработки
5. Повреждение фибринолитической активности;
6. Нарушение деградации плазмина гликолизированным фибрином;
7. Увеличение эндотелиальной клеткой поверхности тромбомоделина;
8. Увеличение эндотелиальной клеткой прокоагулянтной активности;
9. Увеличение уровня конечных продуктов гликосилации [24].
Наличие гипергликемии, возможно, зависит от функции эндотелия [16, 24]. На изолированных сегментах сосудов, полученных у животных с сахарным диабетом, показано нарушение эндотелий-зависимого расслабления, которое можно было вызвать и инкубацией нормальных сосудов при высокой концентрации глюкозы [29, 46]. Гипергликемия активирует в эндотелиальных клетках протеинкиназу С, что может вызывать увеличение выработки сосудосуживающих простагландинов, эндотелина и ангиотензинпревращающего фермента, которые обладают непосредственным или опосредованным повреждающим действием на сосудодвигательную реактивность [3, 46, 56]. Более того, гипергликемия нарушает продукцию матрикса эндотелиальными клетками, что может вести к увеличению толщины основной мембраны. Гипергликемия увеличивает синтез эндотелиальными клетками коллагена IV типа и фибронектина с увеличением активности ферментов, вовлеченных в синтез коллагена [16]. Гипергликемия также задерживает репликацию и вызывает рост погибших эндотелиальных клеток, возможно, вследствие увеличения окисления и гликолиза [46].
Целый ряд метаболических и гемодинамических факторов могут оказывать влияние на дисфункцию эндотелия у больных диабетом и АГ. Гиперхолестеринемия, а, возможно, и гипертриглицеридемия нарушают эндотелий-зависимое расслабление [20]. Как инсулин, так и инсулиноподобный фактор роста (ИФР) могут оказывать действие на эндотелиальные клетки путем стимуляции синтеза ДНК [34]. Существует гипотеза, что эндотелиальная дисфункция при диабете связана с увеличением активности протеинкиназы С в сосудистом эндотелии, что приводит к увеличению тонуса сосудов и развитию атеросклероза [33].
Постоянная гипергликемия усиливает сосудистые заболевания, связанные с сахарным диабетом и АГ. В высоких концентрациях глюкоза оказывает непосредственное (независимое от осмомолярности) токсическое действие на эндотелиальные клетки сосудов [37]. Это токсическое действие может вести к уменьшению эндотелий-зависимого расслабления сосудов, увеличению вазоконстрикции, стимуляции гиперплазии гладкомышечных клеток, ремоделированию сосудов и развитию атеросклероза.
Гипергликемия также увеличивает образование продуктов гликосилации, которые накапливаются в сосудистой стенке [58]. Неферментная гликосилация белков проходит три стадии, которые in vivo зависят от степени и продолжительности гипергликемии, времени полураспада белка и проницаемости тканей по отношению к свободной глюкозе. Через целый ряд механизмов белки неферментной гликосилации способны воздействовать на ключевые процессы атерогенеза и сосудистого ремоделирования [58]. Показана взаимосвязь между накоплением конечных белковых продуктов гликосилации и сосудистыми заболеваниями [58]. Таким образом, продолжающаяся гипергликемия приводит к увеличению выработки внеклеточного матрикса и пролиферации гладкомышечных клеток с гипертрофией и ремоделированием сосудов. Гипергликемия связана со снижением эластичности соединительной ткани стенок артериол и увеличением пульсового давления. Кроме того, гипергликемия приводит к увеличению фильтрации глюкозы, что стимулирует работу переносчика натрия-глюкозы в проксимальных канальцах [30]. Задержкой натрия, вызванной гипергликемией, можно объяснить общее увеличение содержания натрия у больных сахарным диабетом [7]. На нарушение экскреции натрия при ИЗСД оказывает влияние целый ряд патогенетических факторов, связанных с повышением реабсорбции натрия в почечных канальцах. Реабсорбция натрия усиливается в присутствии глюкозы и кетоновых тел. Антинатрий-уретический эффект отмечен при использовании инсулина in vivo, причем инсулин лишь содействует реабсорбции натрия в проксимальных или дистальных канальцах почек [38].
Рассмотрение взаимосвязи сахарного диабета и АГ всеми авторами проводится с акцентом на поражение почек. Диабетическая нефропатия является ведущей причиной поздних стадий заболеваний почек в США [24]. АГ является существенным фактором риска прогрессирования поражения почек при сахарном диабете. Наконец, оценка взаимосвязи сахарного диабета, АГ и диабетической нефропатии может играть существенную роль в подборе рациональной лекарственной терапии.
Заболеваемость и смертность, как больных ИНСД, так и ИЗСД, во многом определяется развитием диабетической нефропатии [12, 15, 43]. Например, у больных ИЗСД с преходящей протеинурией смертность в 37−80 раз выше, чем в общей популяции здоровых людей [21, 15].
Патогенез диабетической нефропатии исследован ранее [14, 24]. Больные с генетической предрасположенностью к сахарному диабету, АГ или к обоим заболеваниям более уязвимы к сосудистым поражениям при развитии существенной гипергликемии, чем пациенты с той же степенью гипергликемии, но без генетической предрасположенности.
Субклинической стадии нефропатии, характеризующейся микроальбуминурией, или предшествует АГ, или ее развитие происходит наравне с повышением артериального давления. Использование 24−часового мониторирования АД у больных ИЗСД с микроальбуминурией без АГ выявило физиологическое ночное снижение АД. Данное обстоятельство тесно связано с развитием автономной нейропатии, которая может оказывать влияние на развитие диабетической нефропатии через изменение суточного профиля АД [40, 48, 52].
Патогенез влияния гиперинсулинемии и инсулинорезистентности на развитие АГ до конца неясен. Однако выяснено, что гиперинсулинемия может привести к АГ через эффекты сосудистого ремоделирования и атеросклеротических изменений.
Таким образом, при ИЗСД в отсутствие диабетической нефропатии АД чаще всего остается нормальным, но вскоре повышается (в пределах 1−2 лет) после появления признаков начальной стадии нефропатии микроальбуминурии от 30 до 300 мг/сутки и быстро прогрессирует по мере появления клинических признаков нефропатии и почечной недостаточности. Это указывает на то, что в основе гипертонии лежит почечный паренхиматозный механизм(ы) [9].
В отличие от этого при ИНСД АГ может развиваться до появления симптомов диабетической нефропатии и в 50% случаев уже имеется у больных при установлении диагноза ИНСД, так же, как и некоторые другие метаболические расстройства, например, ожирение и дислипидемия. Это дает основание полагать, что у таких больных перед возникновением сахарного диабета должны быть уже определенные гормональные и обменные нарушения в рамках АГ, а также то, что оба эти заболевания имеют общую патофизиологическую основу [9].
Выбор антигипертензивного препарата при сахарном диабете
Выбор антигипертензивной терапии у больных сахарным диабетом не прост, поскольку это заболевание накладывает целый ряд ограничений к применению того или иного лекарственного средства, учитывая спектр его побочных действий и, прежде всего, воздействие на углеводный и липидный обмен. При выборе оптимального антигипертензивного препарата при сахарном диабете необходимо учитывать сопутствующие сосудистые осложнения [10].
Диуретики
Применение препаратов этой группы у больных сахарным диабетом вполне оправданно, учитывая наблюдаемую задержку натрия и жидкости у больных как ИЗСД, так и ИНСД.
Однако, тиазидные диуретики в высоких дозах (50 мг гидрохлортиазида или эквивалентные дозы других диуретиков) повышают уровни глюкозы натощак и концентрацию гликозилированного гемоглобина, а также нарушают толерантность к пероральной и внутривенной нагрузке глюкозой. Предполагаемые механизмы нарушения толерантности к глюкозе при лечении тиазидными диуретиками включают уменьшение секреции инсулина и снижение чувствительности тканей к действию инсулина (инсулинорезистентность) [8, 31]
Кроме того, использование тиазидных диуретиков способно увеличить риск возникновения сахарного диабета у лиц пожилого и старческого возраста. По данным 10−летнего исследования, тиазидные диуретики повышают риск развития сахарного диабета II типа независимо от других факторов риска [53]. Наконец, по данным ретроспективного исследования, тиазидные диуретики ускоряют развитие диабетической нефропатии у больных сахарным диабетом с АГ [59].
Таким образом, в лечении артериальной гипертензии у больных сахарным диабетом с успехом могут применяться лишь петлевые диуретики и тиазидоподобные препараты. Первые не обладают диабетогенным эффектом, не нарушают метаболизм липидов и благоприятно воздействуют на почечную гемодинамику. Вторые не влияют на углеводный и липидный обмен и не ухудшают фильтрационную функцию почек, что делает безопасным их применение у больных с хронической почечной недостаточностью.
Как и тиазидные диуретики, b-блокаторы обладают спектром нежелательных метаболических эффектов: нарушают толерантность к углеводам, повышают инсулинорезистентность, обладают гиперлипидемическим эффектом. В основном, все метаболические эффекты b-блокаторов связаны с блокадой b2−адренорецепторов. Интересно, что b-блокаторы с внутренней симпатомиметической активностью оказывают незначительное влияние на углеводный обмен.
Создание селективных b-блокаторов во многом позволило преодолеть нежелательные метаболические эффекты этой группы препаратов. Тем не менее, важно помнить, что при увеличении дозы кардиоселективного b-блокатора эффект кардиоселективности «теряется». Не рекомендуется назначать b-блокаторы больным с ИЗСД с частыми гипо- и гипергликемиями, а также больным с нарушенным распознаванием гипогликемических состояний (из-за развития автономной нейропатии). Субъективные ощущения развивающейся гипогликемии связаны с активацией адренергических рецепторов. Блокада последних может привести к развитию комы без субъективных предвестников [10].
Эти препараты не нарушают липидный обмен, но уменьшают атерогенность сыворотки крови, снижая уровень ЛНП и триглицеридов. Существенным побочным эффектом а-блокаторов является развитие постуральной гипотонии. Она часто осложняет течение диабета вследствие развития автономной полинейропатии [10].
Препараты центрального действия
Препараты центрального действия оказывают целый ряд побочных эффектов, которые могут быть весьма нежелательны у больных сахарным диабетом (сонливость, седативный эффект, сухость во рту, выраженный синдром отмены и провокация кризов АГ).
Новая группа препаратов этого ряда антагонисты 12−имидазолиновых рецепторов (моксонидин) лишены этих побочных эффектов и с наилучшей стороны зарекомендовали себя именно у больных сахарным диабетом [10].
Антагонисты кальция
Препараты этой группы не оказывают влияния на углеводный и липидный обмен, поэтому их без опасений и с большой эффективностью можно применять у больных сахарным диабетом и АГ.
Ингибиторы АПФ
В последние годы эти препараты стали наиболее популярны в связи с их высокой гипотензивной активностью и небольшим количеством побочных эффектов. Как и антагонисты кальция, они метаболически нейтральны, устраняют инсулинорезистентность и способны восстанавливать ранний пик секреции инсулина. Ингибиторы АПФ оказывают мощный органопротективный эффект, который приобретает особое значение у больных сахарным диабетом, страдающих от поражения сердца, почек, сосудов сетчатки. Кроме того, препараты этой группы оказывают антипролиферативное действие на гладкомышечные клетки артериол.
Единственным противопоказанием для применения иАПФ у больных СД является двусторонний стеноз почечных артерий. Это осложнение нужно иметь в виду у больных с генерализованым атеросклерозом [10].
Таким образом, у больных с диабетической нефропатией ингибиторы АПФ, а также верапамил и дильтиазем можно считать антигипертензивными препаратами первого ряда. При недостаточной эффективности монотерапии ингибиторов АПФ следует добавить антагонист кальция или диуретик (в первую очередь индапамид) [8]. Представленные данные свидетельствуют о том, что подходы к лечению АГ у больных сахарным диабетом значительно отличаются от подходов к лечению неосложненной гипертонической болезни. Последнее утверждение в значительной мере основывается на знании практическим врачом побочных эффектов широкого арсенала применяемых гипотензивных средств.
ЛИТЕРАТУРА
1. Аметов А.С., Балаболкин М.И., Моисеев B.C. Сахарный диабет II типа: метаболический аспект и сосудистые осложнения // Клин. фармакол. и терапия. 1994. N3. С.64−65.
2. Громнацкий Н.И., Мельчинская Е.Н. Состояние липидного обмена у больных сахарным диабетом с сопутствующей гипертонической болезнью // Диагностика, первичн. и вторичн. профилактика ИБС и гиперт.болезни:(клинико-эксперимент. исследование. Курск, 1994. С.35−37.
3. Демидова Т.Ю. Особенности патогенеза артериальной гипертонии и применения ингибиторов АКФ у больных с различными клиническими формами сахарного диабета II типа : Автореф. дис. канд. мед. наук . Москва, 1997. 22с.
4. Джонссен Д., Деркс Ф. Гипертензия и диабет // Диабетография. 1995. N2. С.4−6.
5. Зимин Ю.В. Артериальная гипертония при сахарном диабете: особенности патогенеза и лечения (обзор) // Тер. архив. 1999. N10. С.15−20.
6. Орлов С.Н., Постнов И.Ю., Покудин Н.И., Кухаренко В.Ю. Транспорт катионов и индуцированный кальцием гемолиз в эритроцитах больных гипертонической болезнью и крыс со спонтанной гипертензией (сравнительный анализ) // Кардиология. 1989. N7. С.89−95.
7. Ослопов В.Н., Талантов В.В., Хасанов Э.Н. Взаимосвязь артериальной гипертензии и сахарного диабета с позиций нарушения транспорта ионов через мембрану клетки // Акт. вопросы клинич. диабетологии. Научн. труды. Казань, 1994. Т.3. С.22−27.
8. Преображенский Д.В., Сидоренко Б.А . Артериальная гипертензия при сахарном диабете / Русский мед. журнал. 340−344
9. Шестакова М.В., Шамхалова М.Ш., Уханова Т.Ю. и др. Глюренорм при диабетической нефропатии: влияние на функциональное состояние почек и эндотелий сосудов // Пробл. эндокринол. 1996. N2. С.8−11.
10. Шестакова М.В. Артериальная гипертония и сахарный диабет: механизмы развития и тактика лечения / Сахарный диабет. 1999. N3. С. 19−23.
11. Alessandrini P., McRae J., Feman S., FitzGerald G.A. Thromboxane biosinthesis and platelet function in Type I diabetes mellitus // N. Engl. J. Med. -1988. Vol.319. P.208−212.
12. Andersen A.R., Sandahl Christiansen J., Andersen J.K., Kreiner S. et al. Diabetic nephropathyin type I (insulin-dependent diabetes): an epidemiological study // Diahetologia. -1983. Vol.37. P.1499−1504.
13. Anderson S., Brenner B.M. Experimental diabetes and hypertensive vascular disease // In: Hypertension Pathophysiology, Diagnosis and Management. Ed. by Laragh J.H., Brenner B.M. New York: Raven Press. 1990. P.1677−1687.
14. Barkis G.L. Pathogenesis of hypertension in diabetes // Diabetes Rev. 1995. Vol.3. P.460−476.
15.Borch-Jehnsen K., Andersen P.K., Deckert T. The effect of proteinuria on relative mortality in type I (insulin-dependent) diabetes mellitus // Diabetologia. 1985. Vol.28. P. 590−596.
16. Cagliero E., Roth Т., Roy S., Lorenzi M. Characteristics and mechanismsof high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells // Diabetes. 1991. Vol.40. P.102−110.
17. Cardiovascular disease and its risk factors in IDDM in Europe. EURODIAB IDDM. Complication Study Groop / Koivisto V.A.et al. // Diabetes Care. 1996. Vol. 19. N7. P.689−697.
18. Carmassi F., Morale M., Puccetti R. et al. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus // Thromb. Res. 1992. Vol.67. P.643−654.
19. Chair H., Sowers J.R. National high blood pressure education program working groop report on hypertension in diabetes // Hypertension. 1994. Vol.23. P. 145−158.
20. Creager M.A., Cooke G.P., Mendelsohn M. et al. Impaired vasodilatation of forearm resistence vessels in hypercholesterolemic humans // J. Clin. Invest. 1990. Vol.86. P.228−234.
21.Cuncha-Vaz J.G., Fonseca J.R., Abreu J.R.F., Lima J.J.R. Studies on retinal blood flow. II. Diabetic retinopathy // Arch. Ophthalmol. 1978. Vo.96. P.809−811.
22. Davi G., Catalano I., Averna M., Notarbartolo A. et al. Thromboxane biosyntesis and platelet function in type II diabetes mellitus // N. Engl. J. Med. 1990. Vol.322. P. 1769−1774.
23. Di Mino G., Silver M.J., Cerbone A.M. et al. Increased binding of fibrinogen to platelet in diabetes: the role of prostaglandins and thromboxane // Blood. 1985. Vol.65. P.156−162.
24. Epstein M. Diabetes and hypertension: the bad companions // J. of Hypertension. 1997. Vol.l5 (suppl 2). S55−S62.
25. Epstein M., Sowers J.R. Diabetes mellitus and hypertension // Hypertension. 1992. Vol. 19. P.403−418.
26. Erne P., Bolli P., Burgisser E., Buchler F.R. Correlation of platelet calcium with blood pressure: effect antihypertensive therapy // N. Engl. J. Med. 1984. Vol. 310. P.1084−1088.
27. Paris J., Vagn Nielsen H., Henriksen O., ParvingH.-H. et al. Impaired autoregulation of blood flow in sceletal muscle and subcutaneous tissue in long-term type I (insulin-dependent) diabetic patients with microangiopathy // Diabetologia. 1983. Vol.25. P.486−488.
28. Fioretto P., Sambataro M., Copollina M.R. et al. Role of atrial natriuretic peptide in the pathogenesis of sodium retension in IDDM with and without glomerular hyperfiltration // Diabetes. 1992. Vol.41. P.936−945.
29. Gianturco S.H., Bradley W.A.Lipoprotein-mediated cellular mechanisms for atherogenesis in hypertriglyceridemia // Semin. Thromb. Hemost. 1988. Vol. 14. P. 165−169.
30. Harris R.C., Brenner B.M., Seifert J.L.Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vessels from rats with diabetes mellitus // J. Clin. Invest. 1987. Vol. 77. P.724−733.
31. Houston M.C. The effect of antihypertensive drugs on glucose intolerance in hypertensive nondiabetic and diabetics / Amer. Heart J. 1988. Vol. 115. P.540−656
32. Ibbotson S.H., Wairnsley D., Davis J.A., Grant P.J. Generation of trombin activity in relation to factor VIII: concentrations and vascular complicationsin type I (insulin-dependent) diabetes mellitus // Diabetologia. 1992. Vol.35. P.863−867.
33. Inoguchi Т., Xia P., Kunisaki M., Higashi S. et al. Insulin's effect on protein kinase С and diacyiglycerol induced by diabetes and glucose in vascular tissues // Am. J. Physiol. 1994. Vol.267. P.E369−E379.
34. King G.L., Goodman A.D., Buzrey S., Masis A. et al. Receptorsand growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta // J. Clin. Invest. 1985. Vol. 75. P. 1028−1036.
35. Kohner E.M., Hamilton A.M., Saunders S.J. et al. The retinal blood flow in diabetes // Dabetologia. 1975. Vol.11. P.27−33.
36. Levy J., Gavin J.R.III., Sowers J.R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism // Am. J. Med. 19994. Vol.96. P.260−273.
37. Lorenzi M., Cagloero E., Toledo S. Glucose toxity for human endothelial cells in culture: delayed replication, disturbed cell cycle and accelerated death // Diabetes. 1985. Vol.34. P.621−627.
38. Makimattila S., Mantysaari M., Groop P.H. et al. Hyperreactivity to nitrovasodilatators in forearm vasculature is related toautonomic dysfunctionin insulin-dependent diabetes mellitus // Circulation. 1997. Vol.95. P.618−625.
39. Modan M., Halkin H., Lusky A., Segal P. et al. Hyperinsulinemia is characterized by jointly disturbed plasma VLDL, LDL, and HDL levels // Arteriosclerosis. 1988. Vol.8. P.227−236.
40. Monteagudo P.Т., Nybrega J., Cezarini P.R. et al. Altered blood pressure profile, autonomic neuropathy and nephropathyin insulin-dependent diabetic patients // Eur. J. Endocrinol -1996. -Vol.135. P.683−688.
41. Mustard J.F., Packham M.A. Platelets and diabetes mellitus // N. Engl. J. Med. 1984. Vol.311. P665−667.
42. Nadler J.L., Malayan S., Luong H., Shaw S. et al. Evidence that intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus // Diabetes Care. 1992. Vol. 15. P.835−841.
43. Nelson R.G., Pettit D.J., Carraher M.J.. Baird H.R. et al. // Effect of proteinuria on mortality in NIDDM // Diabetes. 1988. Vol.37. P.1499−1504.
44. Noorgaard H. Hypertensionin insulin-dependent diabetes // Dan. Med. Bull. 1996. Vol.43. P.21−38.
45. Pasi К.J., Enayat M.S., Horrocks P.M., Wright A.D. et al. Qualitative and quantitative abnormalities ofvon Willebrand antigen in patients with diabetes mellitus // Thromb. Res. 1990. Vol.59. P.581−591.
46. Phillips G.B.,Jing T.-Y., Resnick L.M., Barbagallo M. et al. Sex gormones and gemostatic risk factors for coronary heart disease in men with hypertension // J. Hypertens. 1993. Vol.11. P.699−702.
47. Pool P.E. The case for metabolic hypertension: is it time to restructure the hypertension paradigm? // Progr. Cardiovasc. Dis. 1993. Vol.36. P.1−38.
48. Sowers J., Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy: an update // Hypertension. 1995. Vol.26. P.869−879.
49. Sowers J., Epstein M. Diabetes mellitus and hypertension: emerging therapeutic perspectives // Cardiovasc. Drug Rev. 1995. Vol.13. P.149−210.
50. Sowers J.R., Sowers P.S., Peuler J.D. Role of insulin resistance and hyperinsulinemia in development of hypertension and atherosclerosis // J. Lab. Clin. Med. 1994. Vol.23. P.647−652.
51. Sowers J.R., Standley P.R., Ram J.L., Jacober S. Hyperinsulinemia, insulin resistance, and hyperglykemia: contributing factors in the pathogenesis of hypertension and atherosclerosis // Am. J. Hypertens. 1993. Vol.6 (suppl.). P.260S−270S.
52. Spallone V., Gambardella S., Maiello M.R. et al. Relationship between autonomic neuropathy, 24−h blood pressure profile and nephropathy in normotensive IDDM patients // Diab. Care. 1994. Vol. 17. P.578−584.
53. Skarfors E.T., Selenus K.I., Lithell H.O. Risk factors for developmentof noninsulin-dependent diabetes in middle-aged men / Brit. Med. J. 1991. Vol.303. P.755−760.
54. Standley P.R., Ali S., Bapna C., Sowers J.R. Increased platelet cytosolic calcium responses to low density lipoprotein in type II diabetes with and without hypertension // Am. J. Hypertens. 1993. Vol.6. P.938−943.
55. Standley P.R., Gangasani S., Prakash R., Sowers J.R. Human platelet calcium measurements: methodological considerations and comparisons with calcium mobilisation in vascular smooth muscle cells // Am. J. Hypertens. 1991. Vol.4. P.546−549.
56. Testamariam B., Brown M.L., Cohen R.A. Elevated glucose impairsendotelium-dependent relaxation by activating protein kinase C. // J. Clin. Invest. 1991. Vol.87. P.1643−1648.
57. Vigstrup J., Mogensen C.E. Proliferative diabetic retinopathy: at risk patients identified by early detection of microalbuminuria // Acta Ophthalmol. 1985. Vol.63. 530−534.
58. Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation and products // J. Lab. Clin. Med. 1994. Vol. 124. P. 19−30.
59. Walker W.G., Herman J., Yin D.P. et al. Diuretics accelerate diabetic nephropathy in hypertensiveinsulin-dependent and noninsulin-dependent subjects / Trans. Amer. Assoc. Phys. 1987. Vol. 100. P.305−315.
60. Zatz R., Brenner B.M. Pathogenesis of diabetic microangiopathy: the hemodynamic view // Am. J. Med. 1986. Vol.80. P.443−453.
61, Zavaroni I., Bonora E., Pagliara M. et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance // N. Engl. J. M. 1989. Vol.320. P.702−706.
2. Громнацкий Н.И., Мельчинская Е.Н. Состояние липидного обмена у больных сахарным диабетом с сопутствующей гипертонической болезнью // Диагностика, первичн. и вторичн. профилактика ИБС и гиперт.болезни:
3. Демидова Т.Ю. Особенности патогенеза артериальной гипертонии и применения ингибиторов АКФ у больных с различными клиническими формами сахарного диабета II типа : Автореф. дис. канд. мед. наук . Москва, 1997. 22с.
4. Джонссен Д., Деркс Ф. Гипертензия и диабет // Диабетография. 1995. N2. С.4−6.
5. Зимин Ю.В. Артериальная гипертония при сахарном диабете: особенности патогенеза и лечения (обзор) // Тер. архив. 1999. N10. С.15−20.
6. Орлов С.Н., Постнов И.Ю., Покудин Н.И., Кухаренко В.Ю. Транспорт катионов и индуцированный кальцием гемолиз в эритроцитах больных гипертонической болезнью и крыс со спонтанной гипертензией (сравнительный анализ) // Кардиология. 1989. N7. С.89−95.
7. Ослопов В.Н., Талантов В.В., Хасанов Э.Н. Взаимосвязь артериальной гипертензии и сахарного диабета с позиций нарушения транспорта ионов через мембрану клетки // Акт. вопросы клинич. диабетологии. Научн. труды. Казань, 1994. Т.3. С.22−27.
8. Преображенский Д.В., Сидоренко Б.А . Артериальная гипертензия при сахарном диабете / Русский мед. журнал. 340−344
9. Шестакова М.В., Шамхалова М.Ш., Уханова Т.Ю. и др. Глюренорм при диабетической нефропатии: влияние на функциональное состояние почек и эндотелий сосудов // Пробл. эндокринол. 1996. N2. С.8−11.
10. Шестакова М.В. Артериальная гипертония и сахарный диабет: механизмы развития и тактика лечения / Сахарный диабет. 1999. N3. С. 19−23.
11. Alessandrini P., McRae J., Feman S., FitzGerald G.A. Thromboxane biosinthesis and platelet function in Type I diabetes mellitus // N. Engl. J. Med. -
12. Andersen A.R., Sandahl Christiansen J., Andersen J.K., Kreiner S. et al. Diabetic nephropathy
13. Anderson S., Brenner B.M. Experimental diabetes and hypertensive vascular disease // In: Hypertension Pathophysiology, Diagnosis and Management. Ed. by Laragh J.H., Brenner B.M. New York: Raven Press. 1990. P.1677−1687.
14. Barkis G.L. Pathogenesis of hypertension in diabetes // Diabetes Rev. 1995. Vol.3. P.460−476.
15.
16. Cagliero E., Roth Т., Roy S., Lorenzi M. Characteristics and mechanisms
17. Cardiovascular disease and its risk factors in IDDM in Europe. EURODIAB IDDM. Complication Study Groop / Koivisto V.A.et al. // Diabetes Care. 1996. Vol. 19. N7. P.689−697.
18. Carmassi F., Morale M., Puccetti R. et al. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus // Thromb. Res. 1992. Vol.67. P.643−654.
19. Chair H., Sowers J.R. National high blood pressure education program working groop report on hypertension in diabetes // Hypertension. 1994. Vol.23. P. 145−158.
20. Creager M.A., Cooke G.P., Mendelsohn M. et al. Impaired vasodilatation of forearm resistence vessels in hypercholesterolemic humans // J. Clin. Invest. 1990. Vol.86. P.228−234.
21.
22. Davi G., Catalano I., Averna M., Notarbartolo A. et al. Thromboxane biosyntesis and platelet function in type II diabetes mellitus // N. Engl. J. Med. 1990. Vol.322. P. 1769−1774.
23. Di Mino G., Silver M.J., Cerbone A.M. et al. Increased binding of fibrinogen to platelet in diabetes: the role of prostaglandins and thromboxane // Blood. 1985. Vol.65. P.156−162.
24. Epstein M. Diabetes and hypertension: the bad companions // J. of Hypertension. 1997. Vol.l5 (suppl 2). S55−S62.
25. Epstein M., Sowers J.R. Diabetes mellitus and hypertension // Hypertension. 1992. Vol. 19. P.403−418.
26. Erne P., Bolli P., Burgisser E., Buchler F.R. Correlation of platelet calcium with blood pressure: effect antihypertensive therapy // N. Engl. J. Med. 1984. Vol. 310. P.1084−1088.
27. Paris J., Vagn Nielsen H., Henriksen O., Parving
28. Fioretto P., Sambataro M., Copollina M.R. et al. Role of atrial natriuretic peptide in the pathogenesis of sodium retension in IDDM with and without glomerular hyperfiltration // Diabetes. 1992. Vol.41. P.936−945.
29. Gianturco S.H., Bradley W.A.
30. Harris R.C., Brenner B.M., Seifert J.L.
31. Houston M.C. The effect of antihypertensive drugs on glucose intolerance in hypertensive nondiabetic and diabetics / Amer. Heart J. 1988. Vol. 115. P.540−656
32. Ibbotson S.H., Wairnsley D., Davis J.A., Grant P.J. Generation of trombin activity in relation to factor VIII: concentrations and vascular complications
33. Inoguchi Т., Xia P., Kunisaki M., Higashi S. et al. Insulin's effect on protein kinase С and diacyiglycerol induced by diabetes and glucose in vascular tissues // Am. J. Physiol. 1994. Vol.267. P.E369−E379.
34. King G.L., Goodman A.D., Buzrey S., Masis A. et al. Receptors
35. Kohner E.M., Hamilton A.M., Saunders S.J. et al. The retinal blood flow in diabetes // Dabetologia. 1975. Vol.11. P.27−33.
36. Levy J., Gavin J.R.III., Sowers J.R. Diabetes mellitus: a disease of abnormal cellular calcium metabolism // Am. J. Med. 19994. Vol.96. P.260−273.
37. Lorenzi M., Cagloero E., Toledo S. Glucose toxity for human endothelial cells in culture: delayed replication, disturbed cell cycle and accelerated death // Diabetes. 1985. Vol.34. P.621−627.
38. Makimattila S., Mantysaari M., Groop P.H. et al. Hyperreactivity to nitrovasodilatators in forearm vasculature is related toautonomic dysfunction
39. Modan M., Halkin H., Lusky A., Segal P. et al. Hyperinsulinemia is characterized by jointly disturbed plasma VLDL, LDL, and HDL levels // Arteriosclerosis. 1988. Vol.8. P.227−236.
40. Monteagudo P.Т., Nybrega J., Cezarini P.R. et al. Altered blood pressure profile, autonomic neuropathy and nephropathy
41. Mustard J.F., Packham M.A. Platelets and diabetes mellitus // N. Engl. J. Med. 1984. Vol.311. P665−667.
42. Nadler J.L., Malayan S., Luong H., Shaw S. et al. Evidence that intracellular free magnesium deficiency plays a key role in increased platelet reactivity in type II diabetes mellitus // Diabetes Care. 1992. Vol. 15. P.835−841.
43. Nelson R.G., Pettit D.J., Carraher M.J.. Baird H.R. et al. // Effect of proteinuria on mortality in NIDDM // Diabetes. 1988. Vol.37. P.1499−1504.
44. Noorgaard H. Hypertension
45. Pasi К.J., Enayat M.S., Horrocks P.M., Wright A.D. et al. Qualitative and quantitative abnormalities ofvon Willebrand antigen in patients with diabetes mellitus // Thromb. Res. 1990. Vol.59. P.581−591.
46. Phillips G.B.,
47. Pool P.E. The case for metabolic hypertension: is it time to restructure the hypertension paradigm? // Progr. Cardiovasc. Dis. 1993. Vol.36. P.1−38.
48. Sowers J., Epstein M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy: an update // Hypertension. 1995. Vol.26. P.869−879.
49. Sowers J., Epstein M. Diabetes mellitus and hypertension: emerging therapeutic perspectives // Cardiovasc. Drug Rev. 1995. Vol.13. P.149−210.
50. Sowers J.R., Sowers P.S., Peuler J.D. Role of insulin resistance and hyperinsulinemia in development of hypertension and atherosclerosis // J. Lab. Clin. Med. 1994. Vol.23. P.647−652.
51. Sowers J.R., Standley P.R., Ram J.L., Jacober S. Hyperinsulinemia, insulin resistance, and hyperglykemia: contributing factors in the pathogenesis of hypertension and atherosclerosis // Am. J. Hypertens. 1993. Vol.6 (suppl.). P.260S−270S.
52. Spallone V., Gambardella S., Maiello M.R. et al. Relationship between autonomic neuropathy, 24−h blood pressure profile and nephropathy in normotensive IDDM patients // Diab. Care. 1994. Vol. 17. P.578−584.
53. Skarfors E.T., Selenus K.I., Lithell H.O. Risk factors for development
54. Standley P.R., Ali S., Bapna C., Sowers J.R. Increased platelet cytosolic calcium responses to low density lipoprotein in type II diabetes with and without hypertension // Am. J. Hypertens. 1993. Vol.6. P.938−943.
55. Standley P.R., Gangasani S., Prakash R., Sowers J.R. Human platelet calcium measurements: methodological considerations and comparisons with calcium mobilisation in vascular smooth muscle cells // Am. J. Hypertens. 1991. Vol.4. P.546−549.
56. Testamariam B., Brown M.L., Cohen R.A. Elevated glucose impairs
57. Vigstrup J., Mogensen C.E. Proliferative diabetic retinopathy: at risk patients identified by early detection of microalbuminuria // Acta Ophthalmol. 1985. Vol.63. 530−534.
58. Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation and products // J. Lab. Clin. Med. 1994. Vol. 124. P. 19−30.
59. Walker W.G., Herman J., Yin D.P. et al. Diuretics accelerate diabetic nephropathy in hypertensive
60. Zatz R., Brenner B.M. Pathogenesis of diabetic microangiopathy: the hemodynamic view // Am. J. Med. 1986. Vol.80. P.443−453.
61, Zavaroni I., Bonora E., Pagliara M. et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance // N. Engl. J. M. 1989. Vol.320. P.702−706.
По материалам: http://medi.ru/
Комментарии
Смотри также
27 июня 2007 | 01:06

Увеличение продолжительности жизни населения во многих индустриально развитых странах способствует тому, что доля возрастной категории людей пожилого возраста постоянно растет. Согласно статистическим прогнозам, на планете к 2035 году каждый четвертый человек будет в возрасте 65 лет и старше.
29 мая 2007 | 01:05

Коронарный синдром (КС) - одно из наиболее важных во врачебной практике понятий. По влиянию на состояние здоровья пациента, риску фатальных состояний, трудностям диагностики, профилактики и лечения, социальному значению он первенствует среди кардиальной патологии. Последнее десятилетие не только внесло существенный вклад в понимание КС, обогатило медицинскую практику новыми решениями, но и поставило на повестку еще более серьезные задачи. Одни из них четко определены, другие - начинают обозначаться.
21 мая 2007 | 10:05
Когнитивные нарушения при артериальной гипертензии
Развитие методов современной нейровизуализации подтверждает, что длительная неконтролируемая артериальная гипертензия может приводить к диффузным изменениям глубинных отделов белого вещества головного мозга – лейкоареозу, который в настоящее время рассматривается как нейровизуализационный коррелят хронической ишемии мозга. Одним из самых значимых симптомов этой патологии являются когнитивные расстройства.
04 мая 2007 | 16:05

Укоренилось мнение, что сердечно-сосудистые заболевания - это преимущественно мужские болезни. Нет, конечно, и у женщин встречается гипертония, аритмии, стенокардия.
09 апреля 2007 | 12:04

Задумайтесь, как может измениться ваш мир, если вы не будете спать ночью? Припомните тот момент времени, когда вы всю ночь "не сомкнули глаз". Вы знаете: это такая ночь, когда вы мечетесь, вертитесь и не можете найти удобного положения, сколько бы раз ни взбивали подушку и ни меняли положения тела.