18 сентября 2006 14:59 |
Зубы из пробирки. Часть I
Зуб человека устроен гораздо сложнее, чем может показаться на первый взгляд. Если специалисты в области тканевой инженерии сумеют сконструировать полноценные зубы для замены утраченных, то в дальнейшем удастся добиться успехов и в регенерации более крупных органов.
Обзор: на переднем крае зубной инженерии
![]() |
Об авторах:
Пол Шарп (Paul T. Sharpe) и Конан Янг (Conan S. Young) впервые встретились два года назад на конференции по биоинженерии зубов и костей. Шарп, профессор Королевского колледжа (Лондон), возглавляет отдел по изучению развития лицевой части головы в госпитале Гая в Лондоне. В 2002 г. он создал биотехнологическую компанию Odontis Ltd, основным направлением работы которой стало выращивание зубов и костей человека путем воспроизведения процессов их формирования у эмбриона. Янг преподает в Гарвардской стоматологической школе и является штатным научным сотрудником Института Форсайта в Бостоне. Он занимается конструированием зубов с использованием биодеградируемых каркасов.
Те или иные проблемы с зубами возникают в течение жизни у 85% взрослых европейцев. К 17 годам 7% людей теряют один-два зуба, а после 50 лет мы лишаемся в среднем 12 зубов. Идеальной заменой выпавшего зуба был бы новый, выращенный в том же месте из ткани самого пациента. Однако долгие годы о решении такой биоинженерной задачи оставалось только мечтать. Ситуация изменилась лишь недавно, благодаря детальному изучению начальных этапов формирования зубов и успехам в области биологии стволовых клеток и тканевой инженерии. Помимо тех благ, которые сулит больным новый метод, его дальнейшая разработка позволит решить и общие проблемы замены вышедших из строя органов. Зубы представляются очень удобным «испытательным полигоном»: они не относятся к числу жизненно важных органов, а потому неудача не грозит катастрофическими последствиями. Звучит, возможно, не очень гуманно, но опыты на зубах могут проложить дорогу к разработке аналогичных операций на тех органах, где врачебная ошибка недопустима.
Все вышесказанное не означает, что «зубная» инженерия – дело простое. Сложившийся за миллионы лет эволюции механизм формирования любых органов начинается еще на эмбриональном уровне. Задача специалистов в области тканевой инженерии – воспроизвести все этапы процесса с их изощренной системой контроля. И прежде чем приступить к ее решению, целесообразно разобраться в том, что задумала сама природа.
Тайные переговоры
Шестинедельный человеческий эмбрион не превышает в длину 2,5 см, формы будущего тела едва заметны. Однако его клетки непрерывно обмениваются информацией, в том числе и относительно формирования зубов. Процесс передачи сигналов крайне сложен, поэтому органы нельзя вырастить от начала и до конца in vitro. Ученым вряд ли удастся когда-нибудь полностью воспроизвести условия естественного образования тканей. Но чем больше они узнают о самых ранних этапах их развития, тем скорее сумеют создать «ростки» зубов, имплантировать их в организм и предоставить природе возможность довершить остальное. Зарождение зубов происходит в результате взаимодействия между двумя разными типами эмбриональных клеток: эпителиальных и мезенхимных. На первых стадиях существования зародыша эпителиальные клетки ротовой полости (из них образуется ее выстилка) посылают первые сигналы клеткам мезенхимы (они строят костную структуру челюсти и мягкие ткани) к началу одонтогенеза (формирования зубов). Последние сообщают эпителиальным клеткам, что «задача ясна», далее начинается своеобразный диалог между участниками процесса «возведения» зубов.
![]() |
Форма будущего зуба определяется его местоположением. Некоторые посылаемые эпителиальными клетками сигналы, которые запускают процесс одонтогенеза, участвуют в регуляции работы важной категории генов мезенхимы. Все они содержат специфическую нуклеотидную последовательность (так называемый гомеобокс) и способствуют развитию различных органов. При формировании челюсти в определенных ее участках активизируются разные гомеобокс-гены, предопределяющие закладку и формирование моляров, премоляров, клыков и резцов.
Так, гомеобокс-ген Barx1 экспрессируется в тех клетках мезенхимы, где в будущем появятся моляры. В ходе опытов на животных ученые вынудили этот ген проявиться там, где должен был быть резец.
Зуб – настоящее чудо дизайнерского искусства, сотворенное природой. У человека на его формирование уходит минимум 14 месяцев. В закладке зубов у эмбриона участвуют ткани двух типов; между их клетками происходит непрекращающийся диалог. Специалисты по тканевой инженерии тщательно исследуют этот поток информации, чтобы использовать полученные данные при создании функциональных искусственных зубов.
Образование зубов
Первые намеки на зубы у эмбриона человека появляются на 6–7−й неделе после зачатия, когда начинает угадываться форма головы. На месте образования будущего зуба происходит небольшое уплотнение эпителиальной ткани ротовой полости, и эпителиальные клетки начинают посылать сигналы клеткам подлежащей мезенхимы. По мере прорастания эпителия в ткань мезенхимы клетки последней посылают ответные сигналы и концентрируются вокруг эпителиального выроста, образуя зачаток зуба. К 9−й неделе слой эпителиальной ткани образует структуру в форме перевернутой чаши, которую заполняет мезенхима. В центре чаши появляется эмалевый «узелок», который теперь служит основным «командным пунктом», откуда отдаются приказы клеткам эпителия и мезенхимы. К 14−й неделе формируется «колокол», состоящий из слоя дифференцирующихся клеток, называемых амелобластами (из них позже образуется эмаль) и слоя одонтобластов (прародителей дентина). Последними появляются корни, формирование которых завершается к моменту прорезывания зубов (6–12 мес. после рождения).
| | |
| | Зуб – не просто кость, а самый настоящий орган. Он состоит из тканей разного типа, каждая из которых выполняет свою функцию. Эмаль, самый твердый материал в организме человека, защищает внутренние части зуба. Дентин, одна из разновидностей костной ткани, заполняет полость зуба и служит своего рода демпфером, смягчающим воздействие пищи во время ее пережевывания. В пульпарной полости располагаются нервы и кровеносные сосуды. Цемент защищает часть зуба, не покрытую эмалью. Периодонтаьная связка представляет собой соединительную ткань, скрепляющую между собой цемент и кость десны и в то же время обеспечиваюшую некоторую пластичность всей конструкции. |
Однако вместо него сформировался моляр. Способность контролировать и предопределять форму зуба крайне важна для зубной инженерии, и ключевую роль здесь играет регуляция активности таких генов, как Barx1. Кроме того, каждый сигнал должен поступать клеткам развивающегося зуба в определенное время.
Первые эксперименты по воспроизведению зубов животных были проведены в Англии в начале 1960−х гг. В последующие тридцать лет ученые пытались вырастить зуб, соединив вместе крошечные кусочки эпителиальной ткани и мезенхимы из области зубного зачатка, взятого у эмбрионов мышей. Такую конструкцию помещали в культурную среду или имплантировали в ту область тела животного, которая хорошо снабжалась кровью. Оказалось, что эмбриональные зубные зачатки до поры до времени развивались нормально, однако образования дентина и эмали не происходило, и дальше процесс не шел.
Для завершения формирования зубов необходимы определенные факторы роста и сигналы, поступающие эмбриону от клеток челюсти. Казалось бы, в таком случае нужно просто трансплантировать зубной зачаток в челюсть – и из него разовьется нормальный зуб. Однако ткань челюсти взрослого человека существенно отличается от эмбриональной, и нет никакой уверенности, что посылаемые ею сигналы будут адекватными.
В ходе исследований зубы поросят измельчили в порошок и обработали ферментами. Полученные изолированные клетки поместили в биодеградируемый каркас. После недельной инкубации по периметру формы образовалось скопление клеток – синяя полоска (рисунок вверху слева). В последующие 25 недель (рисунок вверху справа) каркас растворился, зато появились пульпа, эмаль и дентин. Результатом таких экспериментов стало образование крошечных структур, похожих на зубы. Однако правильная организация тканей новообразования (внизу слева) отмечалась лишь в 15–20% случаев. Чаще «зуб» не имел упорядоченной структуры (внизу справа). Тем не менее подобные эксперименты свидетельствуют о способности изолированных клеток зубов к самоорганизации и образованию островков тканей зуба.
Кроме того, важно, чтобы искусственный зачаток имел правильное соотношение разных клеток, иначе в нем не образуются нужные вещества и структуры. Лучше всего было бы использовать в качестве исходного материала ткани самого пациента (в этом случае они не воспринимаются организмом как чужеродные и не вызывают отторжения). Итак, чтобы добиться успеха в зубной инженерии, нужно выполнить три условия. Во-первых, использовать клетки самого пациента, во-вторых, добиться того, чтобы будущий зуб правильно развивался в окружении ткани челюсти взрослого организма, образуя корни, прочно фиксирующие его на месте с помощью периодонтальной связки. И в-третьих, чтобы форма и размер новой структуры были такими же, как у настоящей.
По материалам:
Смотри также
18 сентября 2006 | 18:09
Изменения в пульпе зуба при формировании глубокой полости. применении различных лечебных паст в эксперименте
Некачественное и несвоевременное лечение глубоких кариозных поражений зубов является главной причиной осложнений и удаления зубовю Полное удаление из глубоких полостей дентина, пораженного кариесом, может привести к механическому обнажению пульпы и ее бактериальному загрязнению. В случаях обнажения пульпы, вызванного кариесом, травматическим отколом коронки зуба или случайным вскрытием полости пульпы при отсутствии ее воспаления следует добиваться образования заместительного дентина с помощью гидроокиси кальция.
16 сентября 2006 | 11:09
Пути повышения активности, стимулирующей репаративный остеогенез, у материалов, имплантируемых в костный дефект
Остеопластические материалы, представляющие собой композиции ортофосфатов кальция, коллагена, гетерополисахаридов и других биополимеров, широко используются в стоматологии, челюстно-лицевой и восстановительной хирургии путем их имплантации в костный дефект. В траматологии и ортопедии они составляют все более серьезную альтернативу дистракционному остеосинтезу при возмещении дефектов трубчатых костей . В соответствии с этим рынок практически ежегодно озвучивает новые названия материалов, индуцирующих костеобразование, что создает определенные трудности у практикующего врача при их выборе.
13 сентября 2006 | 12:09
Дисфункция височно-нижнечелюстных суставов
Височно-нижнечелюстные суставы (ВНЧС) – единственные парные суставы в человеческом организме, в норме правый и левый суставы должны всегда совершать симметричные движения.
09 сентября 2006 | 10:09
Томограф 3D Accuitomo (FPD) – начало новой эры трехмерной цифровой рентгенологии
Создание японской компанией J.Morito томографа 3D Accuitomo (FPD) стало началом новой эры трехмерной цифровой рентгенологии. Благодаря свои характеристикам, томограф позволяет получить отличные изображения твердых и мягких тканей в трехмерном измерении – настоящий подарок стоматологам.
08 сентября 2006 | 10:09
Компьютерный томограф 3D Accuitomo: новое измерение
Когда-то компьютерные томографы использовались лишь для сканирования мозга, а сейчас они применяются для исследования практически любых участков тела, в том числе и в стоматологической практике. Но и среди компьютерных томографов есть свои лидеры.























